top of page

Publications

To get to know, to discover, to publish — this is the destiny of a scientist.     -- François Arago

Image-empty-state.png

37. Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior

Wu, Y., Temple, B. A., Sevilla, N., Zhang, J., Zhu, H., Zolotavin, P., Jin, Y., Duarte, D., Sanders, E., Azim, E., Nimmerjahn, A., Pfaff, S. L., Luan, L., & Xie, C. (2024). Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior.

Cell Reports, 43(5), 114199.

Image-empty-state.png

36. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes

Lycke, R., Kim, R., Zolotavin, P., Montes, J., Sun, Y., Koszeghy, A., Altun, E., Noble, B., Yin, R., He, F., Totah, N., Xie, C., & Luan, L. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes.

Cell Reports, 42(6), 112554.

Image-empty-state.png

35. Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity

Luan, L., Yin, R., Zhu, H., Xie, C., Emerging Penetrating Neural Electrodes: In Pursuit of Large Scale and Longevity.

Annu Rev Biomed Eng. 2023 Jun 8;25:185-205.

Image-empty-state.png

34. Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice

He, F., Sun, Y., Jin, Y., Yin, R., Zhu, H., Rathore, H., Xie, C., & Luan, L., Longitudinal neural and vascular recovery following Ultraflexible neural electrode implantation in aged mice.

Biomaterials Volume 291, December 2022, 121905

Image-empty-state.png

33. Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents

Zhao, Z., Zhu, H., Li, X., Sun, L., He, F., Chung, J. E., Liu, D. F., Frank, L., Luan, L., and Xie, C., Ultraflexible electrode arrays for months-long high-density electrophysiological mapping of thousands of neurons in rodents.

Nature Biomedical Engineering. 2022 Oct 3.

Image-empty-state.png

32. Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes

He, F., Sullender, C. T., Zhu, H., Williamson, M. R., Li, X., Zhao, Z., Jones, T. A., Xie, C., Dunn, A. K., and Luan, L., Multimodal mapping of neural activity and cerebral blood flow reveals long-lasting neurovascular dissociations after small-scale strokes.

Sciences Advances, 22 May 2020, Vol 6, Issue 21

Image-empty-state.png

31. Spikes to Pixels: Camera Chips for Large-scale Electrophysiology

Lycke, R., Sun, L., Luan, L., and Xie, C., Spikes to Pixels: Camera Chips for Large-scale Electrophysiology

Trends in Neurosciences

Image-empty-state.png

30. Clustering with Fast, Automated and Reproducible assessment applied to longitudinal neural tracking

Zhu, H., Li, X., Sun, L., He, F., Zhao, Z., Luan, L., Tran, N.M., and Xie, C., Clustering with Fast, Automated and Reproducible assessment applied to longitudinal neural tracking

arXiv

Image-empty-state.png

29. Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain?

Kleinfeld, D., Luan, L., Mitra, P.P., Robinson, J.T., Sarpeshkar, R., Shepard, K., Xie, C., and Harris, T.D., Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain?

Neuron, 2019.

Image-empty-state.png

28. Developing Next-generation Brain Sensing Technologies–A Review

Robinson, J.T., Pohlmeyer, E., Gather, M.C., Kemere, C., Kitching, J.E., Malliaras, G.G., Marblestone, A., Shepard, K.L., Stieglitz, T., and Xie, C., Developing Next-generation Brain Sensing Technologies–A Review.

IEEE Sensors Journal, 2019.

Image-empty-state.png

27. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays

Zhao, Z., Li, X., He, F., Wei, X., Lin, S., and Xie, C., Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays.

J Neural Eng, 2019. 16(3): p. 035001. PMC6506360

Image-empty-state.png

26. Nano functional neural interfaces

Wang, Y.C., Zhu, H.L., Yang, H.R., Argall, A.D., Luan, L., Xie, C., and Guo, L., Nano functional neural interfaces.

Nano Research, 2018. 11(10): p. 5065-5106.

Image-empty-state.png

25. Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording

Wei, X., Luan, L., Zhao, Z., Li, X., Zhu, H., Potnis, O., and Xie, C., Nanofabricated Ultraflexible Electrode Arrays for High-Density Intracortical Recording.

Adv Sci (Weinh), 2018. 5(6): p. 1700625. PMC6010728

Image-empty-state.png

24. Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model

Luan, L., Sullender, C.T., Li, X., Zhao, Z., Zhu, H., Wei, X., Xie, C., and Dunn, A.K., Nanoelectronics enabled chronic multimodal neural platform in a mouse ischemic model.

J Neurosci Methods, 2018. 295: p. 68-76. PMC5801157

Image-empty-state.png

23. Nanoelectronic coating enabled versatile multifunctional neural probes

Zhao, Z., Luan, L., Wei, X., Zhu, H., Li, X., Lin, S., Siegel, J.J., Chitwood, R.A., and Xie, C., Nanoelectronic Coating Enabled Versatile Multifunctional Neural Probes.

Nano Lett, 2017. 17(8): p. 4588-4595. PMC5869028

Image-empty-state.png

22. A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery

Amoozgar, B., Wei, X., Lee, J.H., Bloomer, M., Zhao, Z., Coh, P., He, F., Luan, L., Xie, C., and Han, Y., A novel flexible microfluidic meshwork to reduce fibrosis in glaucoma surgery.

PloS one, 2017. 12(3): p. e0172556.

Image-empty-state.png

21. Thermophoretic tweezers for low-power and versatile manipulation of biological cells

Lin, L., Peng, X., Wei, X., Mao, Z., Xie, C., and Zheng, Y., Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells.

ACS nano, 2017. 11(3): p. 3147-3154.

Image-empty-state.png

20. Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration

Luan, L., Wei, X., Zhao, Z., Siegel, J.J., Potnis, O., Tuppen, C.A., Lin, S., Kazmi, S., Fowler, R.A., Holloway, S., Dunn, A.K., Chitwood, R.A., and Xie, C., Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration.

Sci Adv, 2017. 3(2): p. e1601966. PMC5310823

Image-empty-state.png

19. Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes

Lin, L., Wang, M., Wei, X., Peng, X., Xie, C., and Zheng, Y., Photoswitchable Rabi Splitting in Hybrid Plasmon-Waveguide Modes.

Nano Lett, 2016. 16(12): p. 7655-7663.

Image-empty-state.png

18. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes

Xie, C., Liu, J., Fu, T.M., Dai, X.C., Zhou, W., and Lieber, C.M., Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.

Nature materials, 2015. 14(12): p. 1286-1292.

Image-empty-state.png

17. Syringe-injectable electronics

Liu, J., Fu, T.M., Cheng, Z.G., Hong, G.S., Zhou, T., Jin, L.H., Duvvuri, M., Jiang, Z., Kruskal, P., Xie, C., Suo, Z.G., Fang, Y., and Lieber, C.M., Syringe-injectable electronics.

Nature Nanotechnology, 2015. 10(7): p. 629

Image-empty-state.png

16. Long term stability of nanowire nanoelectronics in physiological environments

Zhou, W., Dai, X., Fu, T.M., Xie, C., Liu, J., and Lieber, C.M., Long term stability of nanowire nanoelectronics in physiological environments.

Nano Lett, 2014. 14(3): p. 1614-9. PMC3960854

Image-empty-state.png

15. Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials

Lin, Z.C., Xie, C., Osakada, Y., Cui, Y., and Cui, B., Iridium oxide nanotube electrodes for sensitive and prolonged intracellular measurement of action potentials.

Nat Commun, 2014. 5: p. 3206. PMC4180680

Image-empty-state.png

14. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials

Liu, J., Xie, C., Dai, X., Jin, L., Zhou, W., and Lieber, C.M., Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.

Proc Natl Acad Sci U S A, 2013. 110(17): p. 6694-9. PMC3637762

Image-empty-state.png

13. Characterization of the Cell-Nanopillar Interface by Transmission Electron Microscopy

Hanson, L., Lin, Z.C., Xie, C., Cui, Y., and Cui, B., Characterization of the cell-nanopillar interface by transmission electron microscopy.

Nano Lett, 2012. 12(11): p. 5815-20.

Image-empty-state.png

12. Intracellular recording of action potentials by nanopillar electroporation

Xie, C., Lin, Z., Hanson, L., Cui, Y., and Cui, B., Intracellular recording of action potentials by nanopillar electroporation.

Nat Nanotechnol, 2012. 7(3): p. 185-90. PMC3356686

Image-empty-state.png

11. Broadband light management using low-Q whispering gallery modes in spherical nanoshells

Yao, Y., Yao, J., Narasimhan, V.K., Ruan, Z.C., Xie, C., Fan, S.H., and Cui, Y., Broadband light management using low-Q whispering gallery modes in spherical nanoshells.

Nature Communications, 2012. 3: p. 664

Image-empty-state.png

10. A microfluidic positioning chamber for long‐term live‐cell imaging

Hanson, L., Cui, L., Xie, C., and Cui, B., A microfluidic positioning chamber for long-term live-cell imaging.

Microsc Res Tech, 2011. 74(6): p. 496-501. PMC3021629

Image-empty-state.png

09. Vertical nanopillars for highly localized fluorescence imaging

Xie, C., Hanson, L., Cui, Y., and Cui, B., Vertical nanopillars for highly localized fluorescence imaging.

Proc Natl Acad Sci U S A, 2011. 108(10): p. 3894-9. PMC3054026

Image-empty-state.png

08. Microcompression of fused silica nanopillars synthesized using reactive ion etching

Han, S.M., Xie, C., and Cui, Y., Microcompression of Fused Silica Nanopillars Synthesized Using Reactive Ion Etching.

Nanoscience and Nanotechnology letters, 2010. 2(4): p. 344-347.

Image-empty-state.png

07. Noninvasive neuron pinning with nanopillar arrays

Xie, C., Hanson, L., Xie, W., Lin, Z., Cui, B., and Cui, Y., Noninvasive neuron pinning with nanopillar arrays.

Nano Lett, 2010. 10(10): p. 4020-4. PMC2955158

Image-empty-state.png

06. Nanowire platform for mapping neural circuits

Xie, C. and Cui, Y., Nanowire platform for mapping neural circuits.

Proc Natl Acad Sci U S A, 2010. 107(10): p. 4489-90. PMC2842070

Image-empty-state.png

05. Single nanorod devices for battery diagnostics: A case study on LiMn2O4

Yang, Y., Xie, C., Ruffo, R., Peng, H., Kim, D.K., and Cui, Y., Single nanorod devices for battery diagnostics: a case study on LiMn2O4.

Nano Lett, 2009. 9(12): p. 4109-14.

Image-empty-state.png

04. Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy

Lai, K., Peng, H., Kundhikanjana, W., Schoen, D.T., Xie, C., Meister, S., Cui, Y., Kelly, M.A., and Shen, Z.X., Nanoscale Electronic Inhomogeneity in In2Se3 Nanoribbons Revealed by Microwave Impedance Microscopy.

Nano Lett, 2009. 9(3): p. 1265-9.

Image-empty-state.png

03. Large anisotropy of electrical properties in layer-structured In2Se3 nanowires

Peng, H., Xie, C., Schoen, D.T., and Cui, Y., Large anisotropy of electrical properties in layer-structured In2Se3 nanowires.

Nano Lett, 2008. 8(5): p. 1511-6.

Image-empty-state.png

02. Ordered Vacancy Compounds and Nanotube Formation in CuInSe2−CdS Core−Shell Nanowires

Peng, H., Xie, C., Schoen, D.T., McIlwrath, K., Zhang, X.F., and Cui, Y., Ordered vacancy compounds and nanotube formation in CuInSe2− CdS core− shell nanowires.

Nano Letters, 2007. 7(12): p. 3734-3738.

Image-empty-state.png

01. Electrical switching and phase transformation in silver selenide nanowires

Schoen, D.T., Xie, C., and Cui, Y., Electrical switching and phase transformation in silver selenide nanowires.

Image-empty-state.png

More

Image-empty-state.png

More

bottom of page